
From GVIM/EMACS to Modern IDEs:
 A Verification Engineer's Journey with DVT

DVT IDE

Netanel Miller
AI & Verification Innovation Lead, Texas Instruments



My Journey

Passion for innovation
o Continuous exploration of emerging EDA tools and technologies
o Advocate for adopting transformative development methods

About ME

Leading AI 
initiatives for 

Hardware 
Development

Verification 
Team 

Leadership 
role

Technical 
Leader & 

Founder for 
next-gen 

SOC

Joined TI as 
Verification 
Engineer

Electrical 
Engineering 
at Bar Ilan 
University

2012 2016 2019 2020 2025

"Always at the intersection of hardware engineering 
and cutting-edge technology"



Editor vs. IDE: Understanding the Difference

Text Editor / Base IDE
o GVIM, VS Code, Eclipse (without extensions)
o Text manipulation and syntax highlighting
o Generic project organization

Hardware-Aware IDE (DVT)
o Domain-specific intelligence
o Design hierarchy understanding
o Hardware language semantics

“Editors know text; IDEs understand your design”
"The difference between typing code and engineering systems"

GVIM

Eclipse

VSCode
DVT

Xcelium

JCS



Introduction

The Starting Point

o Traditional text editors (GVIM)

o Manual navigation and lookups

o Joined TI 10 years ago to this 
reality

The "Aha" Moment

o Discovery of DVT's 
comprehensive solution

o Design and Verification in one 
environment

o Intelligence-driven 
development

AI Integration

o DVT + VS Code + AI Copilots

o Hardware-aware artificial 
intelligence

o Transforming how we design 
systems

"A journey from text editing to intelligent design assistance"

PAST PRESENT FUTURE



Netanel Miller
Verification team leader, Texas Instruments

The DVT Advantage
Features Deep Dive
Not a full demo - just my everyday essentials



"Design with confidence - your code, any tool, any standard"

DVT's Universal Compiler Technology

Comprehensive Language Support
IEEE HW description language standards:
• SystemVerilog (IEEE 1800-2012/2017/2023)
• VHDL (IEEE 1076-1987 through 2008)
• Specman e language (IEEE 1647-2011)
• Mixed-language environments

Power Format Standards
• UPF (IEEE 1801-2013/2015/2018)
• CPF compatibility
• Multi-power domain visualization
Verification Methodology Integration
Complete UVM support across versions:
• UVM 1.1d, 1.2, 2.0
• OVM compatibility
• VMM support

IEEE Standard compliant (vendor-neutral)
• Configuration compatibility modes for popular simulators (VCS, Xcelium Questa)
• reports non-standard constructs



Code navigation

● Hyperlink to declaration of anything:
● class, module, struct, field, method, signal, macro, `included file, …



Code navigation

● Hyperlink to declaration of anything:
● class, module, method, signal, macro, `included file, …

● Show usages of anything:
● Readers / Writers of any variable / signal
● Constraints of a rand class variable



Code navigation

● Hyperlink to declaration of anything:
● class, module, method, signal, macro, `included file, …

● Show usages of anything:
● Readers / Writers of any variable / signal
● Constraints of a rand class variable

● "Layers" of types, structs/units, methods, events, covergroups, … (e Language ;)



Auto-complete 

● Context-sensitive: NOT textual proposals, only valid completions
● class_variable . <shows fields, methods, constraints, … in the class>
● e_port . <shows hdl_path(), put_mvl(), agent(), …>
● enum_variable == <shows only enum values>



UVM Support

● Perform UVM Runtime Elaboration
● Verification Hierarchy

● Browse & search accurate test topology



UVM Support

● Perform UVM Runtime Elaboration
● Verification Hierarchy
● Config DB

● Browse config_db set/get calls
● Inspect DB values



UVM Support

● Perform UVM Runtime Elaboration
● Verification Hierarchy
● Config DB

● Browse config_db set/get calls
● Inspect DB values

● Factory Overrides
● Untangle overrides applied 

by the UVM factory



UVM Support

● Perform UVM Runtime Elaboration
● Verification Hierarchy
● Config DB

● Browse config_db set/get calls
● Inspect DB values

● Factory Overrides
● Untangle overrides applied 

by the UVM factory
● Registers

● Browse reg blocks
● Visualize reg bitfields



UVM Support

● UVM Browser
● UVM based classes grouped by category
● Mixed-language SV & e Language 
● UVM flow specific API

● Overridden phases
● Factory registered fields
● TLM ports



UVM Support

● UVM Browser
● UVM based classes grouped by category
● Mixed-language SV & e Language 
● UVM flow specific API

● Overridden phases
● Factory registered fields
● TLM ports

● UVM Field Editor
● Inspect and edit UVM field registrations
● Auto-detects correct macro for each field



Visualization & exploration

● Design Hierarchy View
● No need to open the simulation
● Quick search (by instance name, 

by hierarchy, by port name)
● Track elaborated param values 



Visualization & exploration

● Design Hierarchy View
● No need to open the simulation
● Quick search (by instance name, 

by hierarchy, by port name)
● Track elaborated param values

● Schematic Diagrams
● Show ports, sub-instances, logic 

blocks and connections
● Customizable (filters, colors)
● Allows step by step tracing 



Visualization & exploration

● Design Hierarchy View
● No need to open the simulation
● Quick search (by instance name, 

by hierarchy, by port name) 
● Track elaborated param values

● Schematic Diagrams
● Show ports, sub-instances, logic 

blocks and connections
● Customizable (filters, colors)
● Allows step by step tracing 



Visualization & exploration

● Design Hierarchy View
● No need to open the simulation
● Quick search (by instance name, 

by hierarchy, by port name) 
● Track elaborated param values

● Schematic Diagrams
● Show ports, sub-instances, logic 

blocks and connections
● Customizable (filters, colors)
● Allows step by step tracing 



Code Visualization

● Many other types of diagrams:
● Wavedrom Timing Diagrams
● FSM Diagrams
● UVM Component Diagrams
● Bitfield Diagrams



Code Visualization

● Many other types of diagrams:
● Wavedrom Timing Diagrams
● FSM Diagrams
● UVM Component Diagrams
● Bitfield Diagrams



Visualization & exploration

● Many other types of diagrams:
● Wavedrom Timing Diagrams
● FSM Diagrams
● UVM Component Diagrams
● Bitfield Diagrams



Code Visualization

● Many other types of diagrams:
● Wavedrom Timing Diagrams
● FSM Diagrams
● UVM Component Diagrams
● Bitfield Diagrams



Debugging

● Smart Log
● Jump from sim log to code
● Messages color-coded by UVM component
● Errors collected as part of the Problems view



Debugging

● Smart Log
● Jump from sim log to code
● Messages color-coded by UVM component
● Errors collected as part of the Problems view

● Macro expansion
● Inline expansion & quick collapse
● Also visible in Inspect View
● See values in tooltips



Low power format (UPF)

● Power Domain View shows
● Design instances
● Isolation strategies 
● Retention rules

● Power domains also shown in
● Design Hierarchy View
● Schematic Diagrams 
● Breadcrumb Navigation Bar

● Supply Network Diagram 



From GVIM/EMACS to Modern IDEs:
 A Verification Engineer's Journey with DVT

Netanel Miller
Verification team leader, Texas Instruments

The Evolution Continues

DVT + VS Code + AI



DVT in the VS Code Era

● The Power of Integration
● DVT now available as a VS Code plugin
● Industry-standard development environment
● Complete hardware design & verification capabilities in a modern IDE

● VS-Code One Environment, Many Tools

Modern Development Environment



AMIQ's Built-In AI Assistant

● Smart Assistance for Hardware Design
● AMIQ's built-in AI assistant for DVT users
● Hardware-aware code suggestions and completion
● Specialized for HDL and verification languages
● Connects to your company's LLM infrastructure

"AI assistance tailored specifically for hardware engineers"



MCP - Making AI Understand Your Code

● Bringing AI Intelligence to Your local codebase
● Upcoming MCP tools connect your codebase with AI assistants
● Your AI assistant becomes familiar with your specific codebase
● Works alongside external AI Copilots for advanced assistance
● Maintains privacy while enabling powerful completions

Bridges the gap between generic AI and hardware-specific knowledge



From GVIM/EMACS to Modern IDEs:
 A Verification Engineer's Journey with DVT

Netanel Miller
Verification team leader, Texas Instruments

Contact me for further details
Email: miller2812@gmail.com

Phone: 054-6442812
LinkedIn: Netanel Miller

Thank you / Q&A

http://www.linkedin.com/in/millernetanel

