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My Journey

Passion for innovation
o Continuous exploration of emerging EDA tools and technologies
o Advocate for adopting transformative development methods
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Editor vs. IDE: Understanding the Difference

Text Editor / Base IDE
o GVIM, VS Code, Eclipse (without extensions)
o Text manipulation and syntax highlighting
o Generic project organization

Hardware-Aware IDE (DVT)
o Domain-specific intelligence
o Design hierarchy understanding
o Hardware language semantics

“Editors know text; IDEs understand your design”
"The difference between typing code and engineering systems"
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Introduction

The Starting Point

o Traditional text editors (GVIM)

o Manual navigation and lookups

o Joined TI 10 years ago to this 
reality

The "Aha" Moment

o Discovery of DVT's 
comprehensive solution

o Design and Verification in one 
environment

o Intelligence-driven 
development

AI Integration

o DVT + VS Code + AI Copilots

o Hardware-aware artificial 
intelligence

o Transforming how we design 
systems

"A journey from text editing to intelligent design assistance"

PAST PRESENT FUTURE
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The DVT Advantage
Features Deep Dive
Not a full demo - just my everyday essentials



"Design with confidence - your code, any tool, any standard"

DVT's Universal Compiler Technology

Comprehensive Language Support
IEEE HW description language standards:
• SystemVerilog (IEEE 1800-2012/2017/2023)
• VHDL (IEEE 1076-1987 through 2008)
• Specman e language (IEEE 1647-2011)
• Mixed-language environments

Power Format Standards
• UPF (IEEE 1801-2013/2015/2018)
• CPF compatibility
• Multi-power domain visualization
Verification Methodology Integration
Complete UVM support across versions:
• UVM 1.1d, 1.2, 2.0
• OVM compatibility
• VMM support

IEEE Standard compliant (vendor-neutral)
• Configuration compatibility modes for popular simulators (VCS, Xcelium Questa)
• reports non-standard constructs
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Code navigation

● Hyperlink to declaration of anything:
● class, module, method, signal, macro, `included file, …

● Show usages of anything:
● Readers / Writers of any variable / signal
● Constraints of a rand class variable

● "Layers" of types, structs/units, methods, events, covergroups, … (e Language ;)



Auto-complete 

● Context-sensitive: NOT textual proposals, only valid completions
● class_variable . <shows fields, methods, constraints, … in the class>
● e_port . <shows hdl_path(), put_mvl(), agent(), …>
● enum_variable == <shows only enum values>



UVM Support

● Perform UVM Runtime Elaboration
● Verification Hierarchy

● Browse & search accurate test topology
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UVM Support

● Perform UVM Runtime Elaboration
● Verification Hierarchy
● Config DB

● Browse config_db set/get calls
● Inspect DB values

● Factory Overrides
● Untangle overrides applied 

by the UVM factory
● Registers

● Browse reg blocks
● Visualize reg bitfields
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UVM Support

● UVM Browser
● UVM based classes grouped by category
● Mixed-language SV & e Language 
● UVM flow specific API

● Overridden phases
● Factory registered fields
● TLM ports

● UVM Field Editor
● Inspect and edit UVM field registrations
● Auto-detects correct macro for each field
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Debugging

● Smart Log
● Jump from sim log to code
● Messages color-coded by UVM component
● Errors collected as part of the Problems view

● Macro expansion
● Inline expansion & quick collapse
● Also visible in Inspect View
● See values in tooltips



Low power format (UPF)

● Power Domain View shows
● Design instances
● Isolation strategies 
● Retention rules

● Power domains also shown in
● Design Hierarchy View
● Schematic Diagrams 
● Breadcrumb Navigation Bar

● Supply Network Diagram 
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The Evolution Continues

DVT + VS Code + AI



DVT in the VS Code Era

● The Power of Integration
● DVT now available as a VS Code plugin
● Industry-standard development environment
● Complete hardware design & verification capabilities in a modern IDE

● VS-Code One Environment, Many Tools

Modern Development Environment



AMIQ's Built-In AI Assistant

● Smart Assistance for Hardware Design
● AMIQ's built-in AI assistant for DVT users
● Hardware-aware code suggestions and completion
● Specialized for HDL and verification languages
● Connects to your company's LLM infrastructure

"AI assistance tailored specifically for hardware engineers"



MCP - Making AI Understand Your Code

● Bringing AI Intelligence to Your local codebase
● Upcoming MCP tools connect your codebase with AI assistants
● Your AI assistant becomes familiar with your specific codebase
● Works alongside external AI Copilots for advanced assistance
● Maintains privacy while enabling powerful completions

Bridges the gap between generic AI and hardware-specific knowledge
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Contact me for further details
Email: miller2812@gmail.com

Phone: 054-6442812
LinkedIn: Netanel Miller

Thank you / Q&A

http://www.linkedin.com/in/millernetanel

