Powering Intelligent General-Purpose Computing with RISC-V

Charlie Su, Ph.D.
President and CTO
Andes Technology

2025/11/11

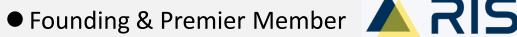
Agenda

- The Rise of Intelligent General Computing (IGC)
- RISC-V Ecosystem for AI/ML and General Computing
- Andes RISC-V Processor and Software Solutions for IGC
- Closing Remarks

Andes Technology Corporation

Background

Pure-play for 20⁺ years, public since 2017


Products in Endpoints, Edge, Auto and Cloud

Leading RISC-V IP market share since 2023 (SHD Group)

Leading Roles in

- Director of the Board
- Technical Steering Committee
- Chair/Co-Chair of Task/Work Groups
 - Early Days: Fast Interrupts, TEE
 - Active: IOPMP, RVP, System Libraries, IME

Quick Facts

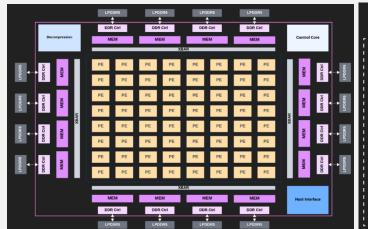
- **30**⁺ RISC-V Processor IP's
- 500° employees
- 18 Billions Andes-Powered SoC
- First RISC-V vendor to deliver
 - SIMD/DSP processor IPs
 - Vector processor IPs
 - Fully-compliant 26262 processor IPs

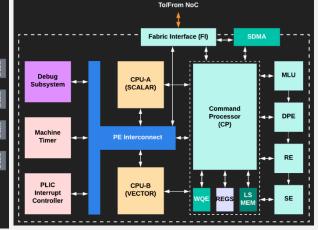
The Rise of Intelligent General Computing

Advancement in AI/ML brings intelligence to General Computing!

- AI PC/Phones, AI IPC/Edge Servers
 - Personal use; factory automation, surveillance, drone

- Software-Defined Vehicles: ADAS Level 0-4, Autonomous Vehicles
- Robot (of any form) as a Platform: features enabled by APP
 - → expected to surpass the smartphone market!
- Intelligent General Computing requires
 - Rich ecosystem for general-purpose computing
 - Advanced ecosystem for large-scale AI/ML
 - → Both SW and HW





RISC-V Enabled Innovations in Large-Scale AI/ML

→ Most use Andes vector/scalar processors with automated custom extensions (ACE)

- Meta MTIA:
 - Meta Training and Inference Accelerator
 - Using Andes vector/scalar cores and ACE to connect to their accelerators (ISCA 2023)
 - Two generations deployed in Meta datacenter since 2023

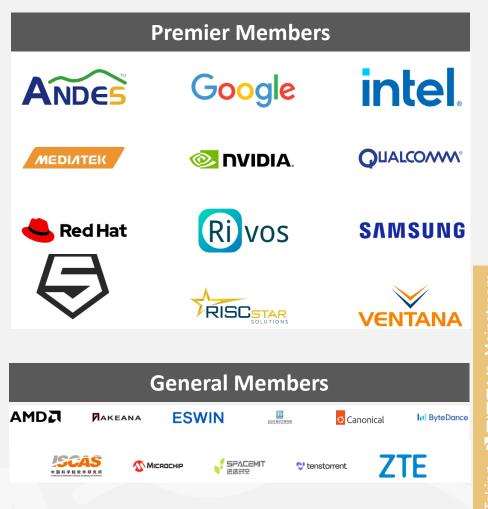
 Al Accelerators Using SRAM-based CIM (Compute-In-Memory:)

Al SoC for Servers

• AI Accelerator for Cloud Service

Al Accelerator Using Photonics

Al Accelerator for ADAS

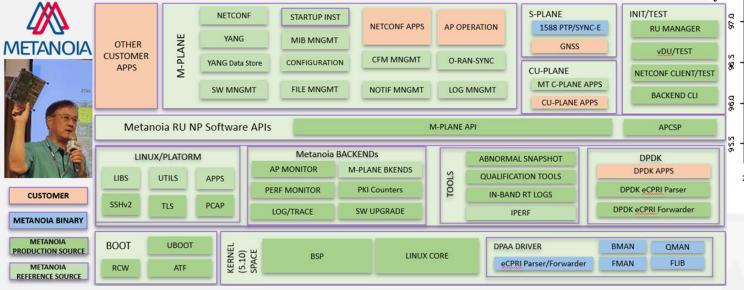

Powered by AX46MPV/AX45MPV/NX27V/AX65 and more

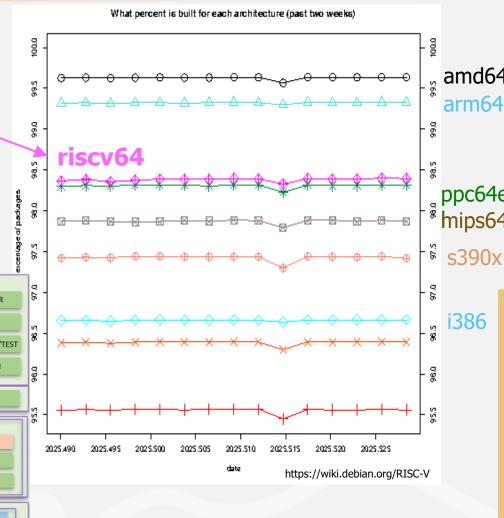
RISC-V SW Ecosystem Fast Maturing with RVI and RISE

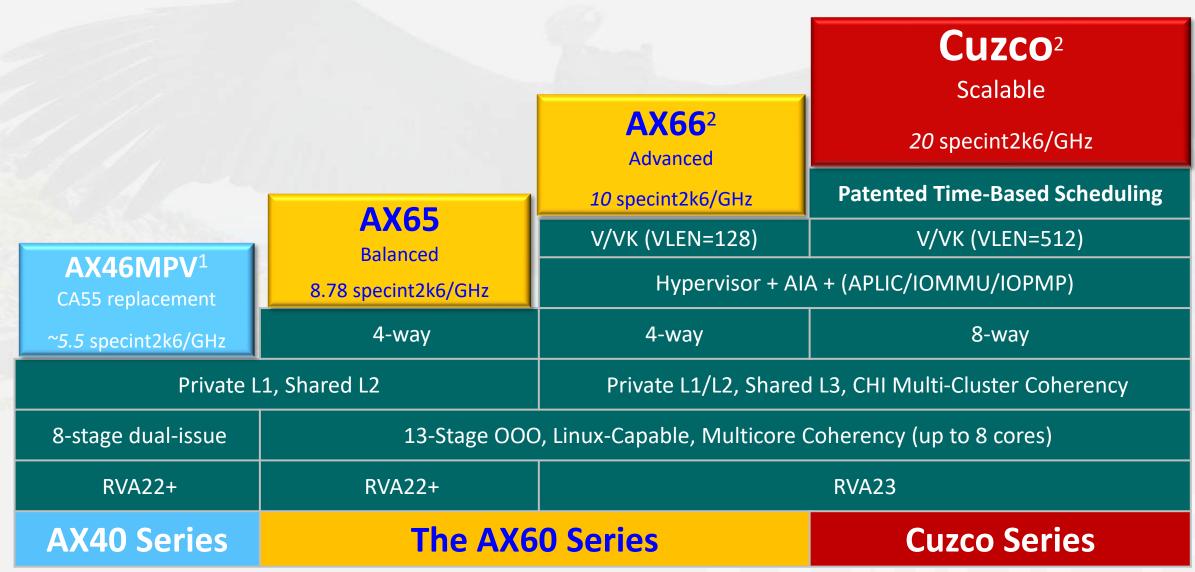
Mission of ARISE

- Accelerate the development of open-source SW for RISC-V
- Raise the quality of RISC-V Platform implementation
- Align efforts to push the RISC-V SW Ecosystem forward

Compilers & Toolchains	LLVM, GCC, GLIBC
System Libraries	FFmpeg, OpenBLAS, OneDAL, XNNpack
Kernel & Virtualization	Linux, Android, Performance Profiles, DynamoRIO, Valgrind
Language Runtimes	Python, Java/OpenJDK, Go, Javascript, WebAssembly, Rust
Linux Distro Integration	Ubuntu, Debian, RedHat, Fedora, Alpine
Simulators/Emulators	QEMU, SPIKE
System Firmware	UEFI, U-Boot, Coreboot, TF-M
Developer Infrastructure	Build Farm, Board Farm, Developer Tools
Security Software	Secure Root-of-Trust, Confidential Compute
Al/Machine Learning	PyTorch, Llama.cpp

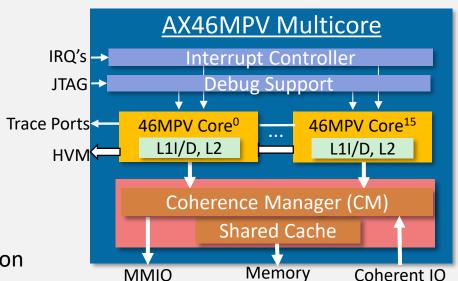


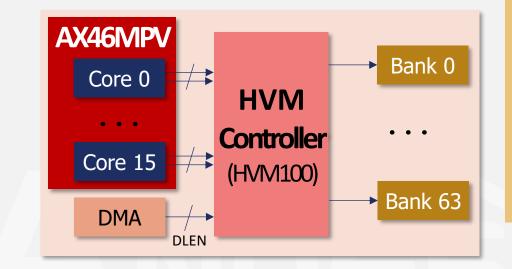

→ Java 22/21 supported: used in Cloud and IOT devices.


- Debian regularly builds > 64K packages
 - RISC-V's successful build rate: 98.4% (#3)

- Metanoia's 5G O-RAN SW Architecture
 - Modularized & Structured Semi-Turnkey with Full Open Source Code Release

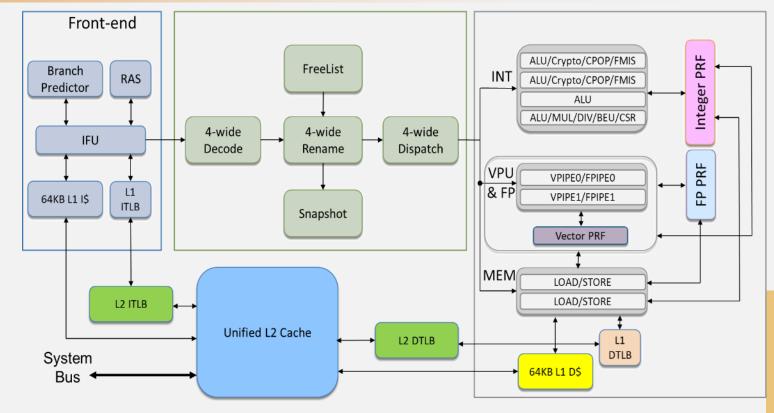
Andes Processors for Intelligent General Computing


1: recently released; 2: to be released soon


AX46MPV: Powerful Compute and Efficient Control

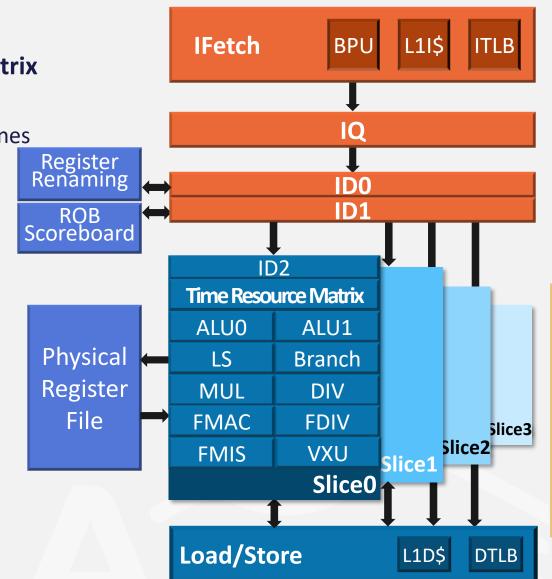
- RVA22+ with AIA and SV38/48/57
- Dual issue for most vector/scalar instructions
- Vector Processing Unit (VPU):
 - VLEN/DLEN: 128~1024, data formats: int4-int64, bf16/fp16-64
 - Enhanced ReductionSum
- Multicore complex: Up to 16 cores
- Boosted memory performance:
 - **Dual-issue load/store**, any load/store and vector-scalar combination
 - Strong load/store outstanding capability
 - **HVM** (High-speed Vector Memory) interface:
 - Capable of multiple outstanding requests with OOO return
 - HVM controller: up to 16 cores and 64 banks
- Performance over AX45MPV:
 - Specint2006: + ~18% (5.65)¹
 - Vector libraries²: > 2x for key functions, +20% on average
 - Bandwidth³: +40%

Note: 1) VLEN 512b, 8 MB shared cache; 2) inc. libvec and libnn; 3) measured by tinymembench



AX66: Mid-Range Application Processor

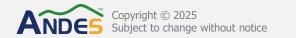
- Built on the success of AX65
- RVA23 compliant
- Dual vector pipes with VLEN=128
- Frontend Decode: 4-Wide
- Reorder Buffer (ROB): 128-Entry
- Execution Pipelines: 8
- Branch Predictor: TAGE-L
- Multiprocessor: Up to 8 Cores
- Shared L3 cache: Up to 32 MB
 - Mostly exclusive with L1/L2
- Memory Port, IOCP, MMIO:
 - 128/256-bit AXI4
- IOMMU, APLIC and CHI support



- **Vector performance**: (vs. scalar ISA)
 - Libnn: 9.6x speedup on average
 - Libvec: 3.6x speedup on average
 - Vector Crypto: 4.7/10.5/6.4x for SHA-256/AES-128/SM4
 - Bandwidth (tinymembench): + 25%


Cuzco: High-End Application Processor

- RVA23 compliant
- Patented time-based scheduling using Time Resource Matrix
 - Schedule instruction issue cycles after decoding
 - Reduce logic complexity and dynamic power for wide machines
- Decode: 8-Wide (and 6-Wide)
- Reorder Buffer (ROB): 256 Entries
- Execution Pipelines: 8 (2 per slice)
- Branch Prediction: TAGE-L & Tournament, 2-level BTB
- L2 TLB: 1K/2K/4K, 4-Way
- Private L1\$: I/D, 64KB, 4-way
- Private L2\$: Up to 8MB
- Shared L3\$: Up to 256MB (mostly exclusive with L2/L1)
- Multiprocessor: up to 8 Cores
- Memory Port and IOCP: CHI, 256/512 bits
- MMIO: 256 bits



Cuzco Early Implementation

- At 5nm
- CPU configuration
 - 8 execution pipelines
 - 7M gates
- L2 configuration
 - 4.5M gates (for 2MB config)
- Target: 2.5GHz
- Current specint2006¹: ~18/GHz

Note 1: RVV isn't used yet.

AndesAIRETM "AI Runs Everywhere" end-to-end solutions

NN models

AndeSight™ IDE

- GCC/LLVM Toolchains
- AndeSoft™ Vector/DSP Lib
- Build, debug, deploy, profile
- - generates files
- for LLVM to
- recognize new
- instructions
- Documentation

AndesClarity[™]

Pipeline Analyzer/Visualize

ACE/COPILOT

AndesAIRE™ Software

AndesAIRE™ NN SDK

- Graph-level optimization (Pruning/Quantization)
- Backend-aware optimization (Fusion/Allocation)
- Backend code-gen

C Code Template

- AnDLA command image
- AnDLA driver/runtime
- NN Library API

TFL Models

• .tflite file

AndesAIRE™ **NN Library** (>250 RVV functions)

AndesAIRE™ **XNNPACK** (>200 RVV functions)

AI Compilers

AI Interpreters

Host Processor

Cuzco/AX60/AX40 series

Compute Acceleration

Vector: 27V, 45V, 46V

DSP/SIMD: D23, D25F, D45

SemIsrael 2025

ACE-scalar ACE-RVV

NPU Accelerator

AnDLA™ I350/370

SoC Hardwired **Engines**

AndesAIRETM "AI Runs Everywhere" end-to-end solutions

NN models

PyTorch ONNX TensorFlowLife TensorFlow

AndeSight™ IDE

- GCC/LLVM Toolchains
- AndeSoft™ Vector/DSP Lib
- Build, debug, deploy, profile
- Analysis and tuning
- RTOS & Linux
- Device drivers
- Sample codes
- Simulator
- Documentation

AndesClarity™

Pipeline Analyzer/Visualizer

ACE/COPILOT

AndesAIRE™ Software

AndesAIRE™ NN SDK

- Graph-level optimization (Pruning/Quantization)
- Backend-aware optimization (Fusion/Allocation)

Models (Q4, running tg128)	Speedup ¹ on AX45MPV
TinyLLaMA 1.1B	26.70 x
Gemma 3 1B	31.44 x
DeepSeek R1 distill Qwen 1.5B	32.41 x

AndesAIRE™ **NN Library** (>250 RVV functions)

AndesAIRE™ **XNNPACK** (>200 RVV functions)

AI Compilers

AI Interpreters

Host Processor

Cuzco/AX60/AX40 series

Compute Acceleration

Vector: 27V, 45V, 46V

DSP/SIMD: D23, D25F, D45

ACE-scalar

ACE-RVV

NPU Accelerator

AnDLA™ I350/370

SoC Hardwired Engines

General Computing: Rich OS Support

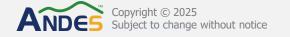
From RISC-V community –

- RISC-V spec: RVA22/23 Profiles and SoC HW/SW Platforms
- Linux Distro/Build Systems for RISC-V (*: Andes verified)

- Linux kernel: upstream compatible
 - Device drivers for Andes AE350 platform
 - LTS (Long-Term Support) kernels verified with LTP (Linux Test Projects)
 - Andes-enhanced/created features
 - Upstreamed: strace/ftrace, Perf, Kernel module, HIGHMEM, CPU hotplug
 - Ongoing: Suspend-to-RAM, Andes PowerBrake support
- Bootloaders: U-Boot, U-Boot-SPL, OpenSBI and BBL
- RTOS:
 - FreeRTOS (RV32/64 UP) aws qualified device Zephyr (RV32/64 UP/SMP)
 - Several commercial RTOS'es (Thread-X, RT-Thread, etc.)

Closing Remarks

- Andes has been leading the RISC-V IP shipment with
 - Rich portfolios from processors to software and development tools
- Andes latest processors offer
 - Powerful compute and efficient control in AX46MPV
 - A wide performance range of RVA23 application processors from AX66 to Cuzco
- RISC-V ecosystem is ready for the emerging market of Intelligent General Computing



• Andes is well-positioned with our latest offerings.

